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Structure of panel data

Panel (or longitudinal) data contain multiple data points on the same units.

Units can be individuals, firms, or countries, for example.

Units are often followed over time

Examples are

labor income and hours worked of individuals by week;

profit and output of firms by quarter;

gdp and inflation of countries by year.

Other types of repeated measurements are

student test scores on multiple subjects (at a given time);

test scores by different students of the same classroom;

birth weight of children born to the same mother.
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Panel data has a multi-index structure, indicating both the unit and time.

We write (yit, xit) for units i = 1, . . . , N at time t = 1, . . . , T .

A micro-panel has N >> T .

Usually enough to look at a two-wave panel.

Here our focus is on controlling for heterogeneity across units.

A macro-panel has N << T .

More like VAR-type modeling. Less attention to this in this module.
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An example

Suppose that we have

yit = x′
itβ + uit, uit = αi + εit, E(εit|xi1, . . . , xiT , αi) = 0,

Say an agricultural (log-linearized) Cobb-Douglas production function.

yit is output;

xit are observable inputs ;

αi is soil quality;

εit is rainfall (unpredictable).

Farmer observes (αi, xit). In general, the inputs xi, αi are not uncorrelated.
The problem is that αi is not observed in data. (Otherwise, could just include
it in xi.)

Estimating
yit = x′

itβ + uit

by (pooled) least-squares suffers from endogeneity bias.
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There is no information on β in the data in levels.

Information in first differences is useful:

∆yit := yit − yit−1 = ∆x′
itβ +∆εit,

as these do not depend on the αi.

Furthermore, E(∆εit|xi1, . . . , xiT ) = 0 because

E(E(εit|xi1, . . . , xiT , αi))− E(E(εit−1|xi1, . . . , xiT , αi)) = 0,

so we can base estimation on a set of unconditional moment equations implied
by this.

An example is to pool first-differenced observations and do least-squares:

N∑
i=1

T∑
t=2

∆xit(∆yit −∆x′
itβ) = 0,

yielding

β̂FD :=

(
N∑
i=1

T∑
t=2

∆xit∆x′
it

)−1( N∑
i=1

T∑
t=2

∆xit∆yit

)
.
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Another example

Treatment evaluation with self selection into treatment.

Potential-outcome notation:

yi = y1
i xi + y0

i (1− xi) = y0
i + (y1

i − y0
i )xi.

We wish to learn

E(y1
i − y0

i |xi = 1) =E(y1
i |xi = 1)− E(y0

i |xi = 1)

=E(y1
i |xi = 1)− E(y0

i |xi = 0) + E(y0
i |xi = 0)− E(y0

i |xi = 1)

=E(yi |xi = 1)− E(yi |xi = 0) + E(y0
i |xi = 0)− E(y0

i |xi = 1)

the average treatment effect on the treated.

The usual assumption (in a cross section) is that

E(y0
i |xi = 0) = E(y0

i |xi = 1)

as to be able to replace the counterfactual outcome of treated by the observed
outcome of non-treated.
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Now suppose we have access to a pre-treatment outcome, yi0.

This constitutes a two-wave panel, with

yi0 = y0
i0, yi = y0

i + (y1
i − y0

i )xi.

(no-one is treated at baseline here.)

Then
yi − yi0 = (y0

i − y0
i0) + (y1

i − y0
i )xi.

Therefore,

E(yi − yi0|xi = 1) =E(y0
i − y0

i0|xi = 1) + E(y1
i − y0

i |xi = 1),

E(yi − yi0|xi = 0) =E(y0
i − y0

i0|xi = 0),

and so

E(y1
i − y0

i |xi = 1) =E(yi − yi0|xi = 1)− E(yi − yi0|xi = 0)

+E(y0
i − y0

i0|xi = 0)− E(y0
i − y0

i0|xi = 1)

and we only require that

E(y0
i − y0

i0|xi = 0) = E(y0
i − y0

i0|xi = 1).
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The identifying assumption here is a parallel-trend assumption.

The above is equivalent to a specification of the form

yi0 =αi + δ0 + εi0

yi =αi + δ1 + xiβ + εi

with E(εi0|xi, αi) = E(εi|xi, αi) = 0.

Then
(yi − yi0) = (δ1 − δ0) + xiβ + (εi − εi0),

which we estimate by fitting a standard linear model to first-differenced data:

E(xi ∆yi)− E(xi)E(∆yi)

E(x2
i )− E(xi)2

= E(∆yi|xi = 1)− E(∆yi|xi = 0) = β.

Usually called difference in differences.
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Within-group estimation

Generic formulation:

yit = x′
itβ + αi + εit, E(εit|xi1, . . . , xiT , αi) = 0.

The requirement on the error is a strict-exogeneity condition.

Note that we do not restrict E(αi|xi1, . . . , xiT ). Dependence of arbitrary
form is allowed.

Can vectorize to get
yi = Xiβ + ιTαi + εi

for

yi :=

 yi1
...

yiT

 , Xi :=

 x′
i1

...
x′
iT

 , εi :=

 εi1
...

εiT

 .
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Let

D :=



−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . . · · ·
...

...
. . .

. . .
. . . · · ·

...
0 · · · · · · 0 −1 1


by the (T −1)×T matrix that transforms data in levels into first differences.

Take first-differences to sweep out the fixed effect

Dyi = DXiβ +Dεi.

Note that, if εi|Xi ∼ (0, σ2IT ), then

Dεi|Xi ∼ (0, σ2DD′);

first-differenced errors have a moving-average structure.
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The generalized least-squares estimator of β solves

N∑
i=1

X ′
iD

′(DD′)−1D(yi −Xiβ) = 0.

Note that

M := D′(DD′)−1D = IT − ιT ι
′
T

T
so that

Myi = yi − ιT
ι′T yi
T

= yi − ιT ȳi.

M transforms data in levels into deviations from within-group means.

The corresponding within-group estimator is

β̂WG :=

(
N∑
i=1

X ′
iMXi

)−1( N∑
i=1

X ′
iMyi

)
.
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The need for within-group variation

Note that we require that

N∑
i=1

X ′
iMXi =

N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)
′

has full rank.

Otherwise the estimator is not unique.

This is the usual no-colinearity condition

Here this means that regressors need to have variation within (at least some)
groups

Do not include a constant term or things such as race, gender, etc. that do
not vary within units.
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WG via a dummy-variable regression

We can stack the equations

yi = Xiβ + ιTαi + εi

over units to get
y1
y2
...
yN

 =


X1

X2

...
XN

β +


ιT 0 . . . 0
0 ιT . . . 0
...

. . .
. . .

...
0 0 . . . ιT




α1

α2

...
αN

+


ε1
ε2
...
εN


which can be written compactly as as

y = Xβ +Bα+ ε

for B = IN ⊗ ιT .
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We can then treat α as a (large) parameter and estimate it jointly with β
through least squares.

Standard partitioned-regression results applied to

y = Xβ +Bα+ ε

imply that

β̂FE = (X ′(INT −B(B′B)−1B′)X)−1(X ′(INT −B(B′B)−1B′)y) = β̂WG

because
INT −B(B′B)−1B′ = IN ⊗M.

Indeed,

B′B = (IN ⊗ ιT )
′(IN ⊗ ιT ) = (IN ⊗ ι′T )(IN ⊗ ιT ) = IN ⊗ ι′T ιT = IN ⊗ T

BB′ = (IN ⊗ ιT )(IN ⊗ ιT )
′ = (IN ⊗ ιT )(IN ⊗ ι′T ) = IN ⊗ ιT ι′T

and so

INT −B(B′B)−1B′ = (IN ⊗ IT )− (IN ⊗ ιT ι′T/T) = (IN ⊗M).

Usually refered to as fixed-effect or least-squares dummy-variable estimator.
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WG via a control-function regression

Consider pooling the data and regressing yit on a constant, xit and x̄i.

By partitioned regression this amounts to regressing yit on the residual from
a regression of xit on a constant and x̄i:

min
δ1,δ2

N∑
i=1

T∑
t=1

(xit − δ1 − δ2x̄i)
2.

Applying the elementary least-squares formulae here yields

δ̂2 =

∑N
i=1

∑T
t=1(x̄i − x̄)xit∑N

i=1

∑T
t=1(x̄i − x̄)x̄i

=

∑N
i=1(x̄i − x̄)x̄i∑N
i=1(x̄i − x̄)x̄i

= 1

and
δ̂1 = x̄− δ̂2x̄ = 0.

So the relevant residual is simply xit − x̄i, which again yields within-groups.
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Statistical properties

If
εi ∼ (0, σ2IT )

then within-groups is the optimal generalized least-squares estimator.

Consequently, it is best linear unbiased by the Gauss-Markov theorem.

It remains unbiased for more general error structures

εi ∼ (0,Σ)

although it will no longer be optimal in the above sense.

WG is nonetheless the workhorse estimator for the linear panel model (at
least, provided that strict exogeneity holds!).

Be sure to use suitably robust standard errors for inference.
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Consistency

The usual asymptotic framework has N → ∞ and T held fixed, and we
presume random sampling in the cross section.

In this case WG is a least-squares estimator on system of T equations.

We have

β̂WG − β =

(
N∑
i=1

X ′
iMXi

)−1( N∑
i=1

X ′
iMεi

)
p→ 0

provided that

The matrix A := E(X ′
iMXi) exists and has maximal rank, and

E(εi|Xi, αi) = 0 holds.
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Limit distribution

Further, assuming that

the matrix C := E(X ′
iMΣMXi) exists,

we have

√
N(β̂WG − β)

d→ N(0, A−1C A−1).

When ε ∼ (0, σ2IT ) we have
C = σ2A

and

√
N(β̂WG − β)

d→ N(0, σ2A−1)

but we will usually not presume this.
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Variance estimation

For inference we need consistent estimators of A and C.

For A we use

1

N

N∑
i=1

X ′
iMXi.

For C, first consider the simple case where C = σ2A.

Write
ε̂i = M(yi −Xiβ̂WG).

The naive plug-in estimator would use

σ̂2 =
1

N

N∑
i=1

ε̂′iε̂i
T

=
1

N

N∑
i=1

ε′iMεi
T

+ op(1).

With εi ∼ (0, σ2IT ) we have

E(ε′iMεi) = σ2trace(M) = σ2(T − 1).
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Hence,

σ̂2 p→ σ2 T − 1

T
= σ2 − σ2

T
.

The inconsistency of σ̂2 is a consequence of the estimation noise in the fixed
effects.

A degrees-of-freedom correction solves the problem:

σ̃2 :=
T

T − 1
σ̂2 =

1

N

N∑
i=1

ε′iMεi
T − 1

.

A robust estimator of C is

1

N

N∑
i=1

X ′
iMε̂iε̂

′
iMXi.

This is often called cluster-robust variance estimator

It handles general forms of both heteroskedasticity and serial correlation.
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Traditional heteroskedasticity robust variance estimator

The view of WG as a dummy-variable least-squares regression may suggest
using a traditional (cross-sectional) ‘White’-type variance formula to deal
with heteroskedasticity.

This amounts to estimating C by

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)
′ε̂2it.

This estimator is inconsistent.

Indeed,
ε̂it = εit − ε̄i + op(1)

and so
E(ε̂2it|Xi) = E((εit − ε̄i)

2|Xi) = E(ε2it|Xi) +O(T−1).
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Comment: Specification testing

The above also highlights that usual specification tests developed for cross-
sectional or time series problems, such as tests for heteroskedasticity or serial
correlation should not be used here.

If desired, panel data alternatives for some of these tests have been developed
and should be used instead.
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The random-effect model

The classical random-effect approach for

yi = Xiβ + ιTαi + εi

assumes that

εi|Xi, αi ∼ (0, σ2IT ), αi|Xi ∼ (0, γ2IN );

here a constant term (and if need be other variables that do not vary over
time) is (and can be) included as regressor.

One implication is that
E(yi|Xi) = Xiβ

so that a pooled least-squares regression is consistent.

This is not suitable when we view αi as an unobserved confounding factor!
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Estimation

Here, the error satisfies

ui = ιTαi + εi ∼ (0,Ω)

for

Ω =


σ2 + γ2 γ2 . . . γ2

γ2 σ2 + γ2 . . . γ2

...
. . .

. . .
...

γ2 γ2 . . . σ2 + γ2

 = σ2IT + γ2ιT ι
′
T .

The (infeasible) generalizes least-squares estimator thus is(
N∑
i=1

X ′
iΩ

−1Xi

)−1( N∑
i=1

X ′
iΩ

−1yi

)
.
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To construct a feasible version of the GLS estimator we can use residuals
from a pooled least-squares regression, say ûit.

We estimate the diagonal entries of Ω as

1

NT

N∑
i=1

T∑
t=1

û2
it

p→ σ2 + γ2,

and the off-diagonal entries of Ω as

1

NT (T − 1)

N∑
i=1

T∑
t=1

∑
s ̸=t

ûitûis
p→ γ2.

The random-effect estimator then is

β̂RE :=

(
N∑
i=1

X ′
iΩ̂

−1X

)−1( N∑
i=1

X ′
iΩ̂

−1y

)
.
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Correlated random effects

We can model the dependence between αi and the xit.

A simple example would be

αi|Xi ∼ (x̄′
iδ, γ

2).

This corresponds to

αi = x̄′
iδ + ηi, ηi ∼ (0, γ2).

Substitution into the model yields

yit = x′
itβ + αi + εit = x′

itβ + x̄′
iδ + (εit + ηi).

Can estimate this by random effects, as before.

Note that pooled estimation yields the fixed-effect estimator!
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The strict-exogeneity assumption

E(εit|xi1, . . . , xiT , αi) = 0

has been at the heart of our developments so far.

Often too strong to maintain.

It rules out dynamics and, more generally, feedback from current outcomes
to future regressors.

These would lead to bias and inconsistency in the within-group estimator.
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A dynamic model

Consider the basic case where

yit = αi + ρyit−1 + εit, εit ∼ i.i.d.(0, σ2),

and we observe an initial observation yi0.

The within-group estimator is based on the presumption that

E((yit−1 − ȳi−)εit) = 0.

However,

E((yit−1 − ȳi−)εit) = −E(ȳi−εit)

= − 1

T

T−1∑
s=0

E(yisεit) = − 1

T

T−1∑
s=t

E(yisεit)

= −E(yitεit)
T

− E(yit+1εit)

T
− · · · − E(yiT−1εit)

T

= −σ2

T
− ρσ2

T
− · · · − ρT−tσ2

T
.

The de-meaning introduces endogeneity bias of its own kind.
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In the current example, we have

E(εit|yi0, . . . , yit−1, αi) = 0.

(Note that this implies that errors are serially uncorrelated.)

Taking first-differences gives

∆yit = ρ∆yit−1 +∆εit.

Pooled least-squares on first differences would again be inconsistent because

E(∆yit−1∆εit) = −E(yit−1∆εit−1) = −E(yit−1εit−1) = −σ2 ̸= 0.

However,

E(yit−2∆εit−1) = E(yit−3∆εit−1) = · · · = E(yi0∆εit−1) = 0

because errors are uncorrelated, while

E(yit−2∆yit−1) = E(yit−2yit−1)− E(yit−2
2) ̸= 0

and so on.
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GMM estimator

Note that we do not make assumptions on the distribution of yi0|αi; initial
conditions can have heterogeneous distributions (across agents) that need
not equal the steady-state distribution of the markov process.

This is useful as stationarity can be a restrictive assumption in short panels.

The above argument gives rise to a set of sequential moment conditions:

E




yit−2

yit−3

...
yi0

 (∆yit − ρ∆yit−1)

 = 0

for each t = 2, . . . , T .

This gives a total of T (T−1)/2 moment equations that can be combined
through a conventional GMM procedure.

They do not rely on homoskedasticity.
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Let

Zi :=


yi0 0 0 . . . 0 . . . 0
0 yi0 yi1 . . . 0 . . . 0
...

. . .
...

0 0 0 . . . yi0 . . . yi(T−2)

 .

Then we use the empirical moments

1

N

N∑
i=1

Zi(∆yi − ρ∆y−) = 0.

Stacking blocks across individuals to get

Z′∆y− := (Z′
1, . . . , Z

′
N )

 ∆y1−
...

∆yN−

 , Z′∆y := (Z′
1, . . . , Z

′
N )

 ∆y1
...

∆yN

 ,

the estimator for a given weight matrix A is

ρ̂IV =
(
∆y′

−ZAZ′∆y−
)−1 (

∆y′
−ZAZ′∆y

)
.
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This GMM estimator is consistent and asymptotically-normal under fixed-T
asymptotics (under usual regularity conditions).

In
ρ̂IV =

(
∆y′

−ZAZ′∆y−
)−1 (

∆y′
−ZAZ′∆y

)
the optimal choice for the weight matrix is

Aopt =

(
1

N

N∑
i=1

Z′
i∆ε̂i∆ε̂′iZi

)−1

where ∆ε̂i are one-step GMM residuals.

The asymptotic variance of the two-step estimator can be estimated by(
∆y′

−ZAoptZ
′∆y−

)−1
.
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Comment: strong persistence

Because
∆yit = αi − (1− ρ)yit−1 + εit

the predictive power of lagged outcomes will be low when ρ is close to unity.

In the unit root case
∆yit = αi + εit

and
E(∆yit|yi0, . . . , yit−1, αi) = 0.

The Jacobian of the moments in this case is

−E




yit−2

yit−3

...
yi0

∆yit−1

 = 0;

instruments become irrelevant and identification fails.
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Comment: Long panels

The GMM estimator has non-negligible bias in long panels.

(Under homoskedasticity) we have, as N,T → ∞ with N/T → c for some
finite constant c ∈ (0,+∞),

√
NT

(
ρ̂IV − ρ+

1 + ρ

N

)
d→ N(0, 1− ρ2).

Compare this to WG under the same conditions:

√
NT

(
ρ̂WG − ρ+

1 + ρ

T

)
d→ N(0, 1− ρ2).

Here it would suffice to use

ρ̂WG +
1 + ρ̂WG

T
,

a bias-corrected within-group estimator.
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Accommodating serial dependence

The approach can be modified to

E(εit|yi0, . . . , yit−p, αi) = 0.

for some 1 ≤ p ≤ t.

This allows for dependence between εit and εit−j for 1 ≤ j < p.

A simple example would be a moving-average process, e.g.,

εit = ηit + θηit−1, ηit ∼ i.i.d.(0, σ2
η).

The moment restriction is not compatible with an autoregressive process,
however, such as

εit = ϱεit−1 + ηit, ηit ∼ i.i.d.(0, σ2
η).

as correlation decays exponentially in t.
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Higher-order dynamics

The above discussion is straightforward to adapt to

yit = αi + ρ1yit−1 + ρ2yit−2 + · · ·+ ρpyit−p + εit

for some p provided that the serial dependence in the time-varying errors is
suitably restricted.
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Identifying power of covariates

An interesting generalization is

yit = αi + ρyit−1 + x′
itβ + εit

under the assumption that

E(εit|xi1, . . . , xiT , αi) = 0.

Here,

regressors xit are strictly exogenous,

errors εit may be serially correlated,

lagged values yit−1 are effectively (treated as) endogenous.

Exogeneity yields moment conditions of the form

E




xi1

xi2

...
xiT

 (∆yit − ρ∆yit−1 −∆x′
itβ)

 = 0.
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General feedback problems

Feedback of arbitrary form such as in

yit = αi + x′
itβ + εit

with
E(εit|xi1, . . . , xit, αi) = 0.

can be handled with GMM based on

E




xit−1

xit−2

...
xi1

 (∆yit −∆xitβ)

 = 0.

44 / 74



Outline

1 Setting and examples

2 Within-group estimation

3 Random-effect estimation

4 Dealing with feedback in panel data

5 Nonlinear models

6 Long panels

7 Discrete heterogeneity

45 / 74



Additive effects

Models that are nonlinear in common parameters but additive in fixed effects
pose no substantial problems.

Take
yit = φ(xit, β) + αi + εit, E(εit|xi1, . . . , xiT , αi) = 0

and φ some known function.

Can still remove fixed effects by differencing.

Can again construct a GMM estimator based on, say,

E




xiT

xit−2

...
xi1

 ((yit − yit−1)− (φ(xit, β)− φ(xit−1, β)))

 = 0.
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Limited dependent variables

The additive specification will not be suitable in cases where the outcome is
limited:

discrete choice

count outcomes

etc.

It is not possible, in general, to separate the problem of inference on β from
estimation of αi.

An approach that estimates αi jointly with β will, in general, be inconsistent
for β when T is treated as fixed.

This is known as the incidental-parameter problem.
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Incidental-parameter problem

Take a likelihood framework. Maximum likelihood solves the concentrated
problem

θ̂ = argmax
θ

N∑
i=1

T∑
t=1

log f(zit; θ, α̂i(θ)), α̂i(θ) = argmax
αi

T∑
t=1

log f(zit; θ, αi).

We have

θ0 = argmax
θ

lim
N→∞

1

N

N∑
i=1

E (log f(zit; θ, αi(θ))) ,

with αi(θ) = argmax
αi

E(log f(zit; θ, αi)).

However, with T fixed,

θ̂
p→ argmax

θ
lim

N→∞

1

N

n∑
i=1

E (log f(zit; θ, α̂i(θ)))

and α̂i(θ)
p↛ αi(θ).
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Multiplicative effects

One case where positive results can be obtained is in models of the form

yit = φ(xit, β)αi εit, E(εit|xi1, . . . , xiT , αi) = 1

and φ some known function.

One popular example is a count-data regression:

E(yit|xi1, . . . , xiT , αi) = exp(x′
itβ)αi.

Another example would be a binary-choice model with

P(yit = 1|xi1, . . . , xiT , αi) = F (x′
itβ)αi

for some cdf F and α ∈ (0, 1).
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This setting is peculiar because

E
(

yit
φ(xit, β)

∣∣∣∣xi1, . . . , xiT , αi

)
= αi

for all t = 1, . . . , T .

Therefore, we can ‘difference-out’ the fixed effects by using

E
(

yit
φ(xit, β)

− yit−1

φ(xit−1, β)

∣∣∣∣xi1, . . . , xiT , αi

)
= 0

for all t = 2, . . . , T .

We can also take deviations from within-group means:

E

(
yit

φ(xit, β)
−

∑
j yij∑

j φ(xij , β)

∣∣∣∣∣xi1, . . . , xiT , αi

)
= 0
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One unconditional moment equation arising from this last argument is

E

(
xit

(
yit −

( ∑
j yij∑

j φ(xij , β)

)
φ(xit, β)

))
= 0

The estimator based on this is often called the pseudo-poisson estimator.

The above moment condition is equal to the (profiled/concentrated) score
equation for β if yit|xi1, . . . , xiT , αi is assumed to be poisson distribution
with mean φ(xit, β)αi, and all parameters are estimated jointly by standard
maximum likelihood.

The pseudo-poisson estimator therefore does not need the data to be poisson
distributed. It does not require the data to be count data neither; they can
be continuous with a mass point at zero. You do need to use robust standard
errors for inference.

Do not use pseudo-poisson when regressors are not strictly exogenous! On
the other hand, you can still construct a differencing-based estimator based
on sequential moment restrictions.
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Censored regression

Now take
yit = max{ηi + xitθ + εit, 0}

with stationary errors that are independent of regressors, with CDF F .

Take a two-wave panel for simplicity.

Here, only units for which no censoring occurs are informative about θ.

Conditional on yi1 and yi2 both being uncensored,

E(∆yi −∆xiθ|xi, yi1 > 0, yi2 > 0)

equals
E(∆yi −∆xiθ|xi, εi1 > −ηi − xi1θ, εi2 > −ηi − xi2θ)

and this is non-zero, in general.

This is so because the truncated error distributions are different across time.
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The moment condition can be restored by artificially censoring further.

Indeed,

E(∆εi|εi1 > max{−ηi−xi1θ,−ηi−xi2θ}, εi2 > max{−ηi−xi1θ,−ηi−xi2θ})

is zero by stationarity.

The errors are unobserved but

εi1 > −ηi − xi1θ ⇔ yi1 > 0

εi1 > −ηi − xi2θ ⇔ yi1 > −∆xiθ,

and, similarly,

εi2 > −ηi − xi1θ ⇔ yi2 > ∆xiθ

εi2 > −ηi − xi2θ ⇔ yi2 > 0.

We thus consider a trimmed least-squares estimator

min
θ

N∑
i=1

(∆yi −∆xiθ)
2 {yi1 > max{0,−∆xiθ}} {yi2 > max{0,∆xiθ}}
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Logistic regression

A simple two-period logit model has

P(yi1 = 1|αi) =
1

1 + e−αi
= F (αi), P(yi2 = 1|αi) =

1

1 + e−(αi+β)
= F (αi+β).

Here, β is the log-odds ratio.

The log-likelihood is

N∑
i=1

yi1 logF (αi ) + (1− yi1) log(1− F (αi ))

+

N∑
i=1

yi2 logF (αi + β) + (1− yi2) log(1− F (αi + β)).

To profile-out the fixed effects, note that we have four types of units in the
data:

yi1 = 0, yi2 = 1 (movers in )

yi1 = 1, yi2 = 0 (movers out)

yi1 = 1, yi2 = 1 (stayers in )

yi1 = 0, yi2 = 0 (stayers out)
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The score equation for αi is

(yi1 + yi2)− (F (αi) + F (αi + β)) = 0.

If yi1 = 0, yi2 = 1 (movers in ) this is 1− F (αi)− F (αi + β) = 0.

If yi1 = 1, yi2 = 0 (movers out) this is 1− F (ηi)− F (αi + β) = 0.

If yi1 = 1, yi2 = 1 (stayers in ) this is 2− F (αi)− F (αi + β) = 0.

If yi1 = 0, yi2 = 0 (stayers out) this is − F (αi)− F (αi + β) = 0.

and so

for movers
α̂i(β) = −β/2;

for stayers
α̂i(β) = ±∞.

Stayers do not carry information about β, so do not contribute to the profile
log-likelihood.
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Let ∆yi = yi2 − yi1.

Movers have ∆yi ∈ {−1, 1}.

The profile likelihood is

2
n∑

i=1

{∆yi = −1} logF (−β/2) + {∆yi = 1} logF (β/2).

The profile-score equation is

N∑
i=1

{∆yi = 1} (1− F (β/2))− {∆yi = −1}F (β/2) = 0.

With n01 =
∑N

i=1{∆yi = 1} and n10 =
∑N

i=1{∆yi = −1} the score root is

β̂ = 2F−1

(
n01

n10 + n01

)
= 2F−1

(
1

1 + n10/n01

)
p→ 2F−1

(
1

1 + e−β

)
= 2β

and so maximum-likelihood is inconsistent.
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Here we have used that

plimN→∞
n10

n01
=

E(P(∆yi = −1|αi))

E(P(∆yi = 1|αi))
= e−β ,

which follows from the observation that

E(P(∆yi = −1|αi)) = E
(

1

1 + e−αi

e−(αi+β)

1 + e−(αi+β)

)
,

and

E (P(∆yi = 1|αi)) = E
(

e−αi

1 + e−αi

1

1 + e−(αi+β)

)
,

so that
E (P(∆yi = −1|αi)) = e−β (E (P(∆yi = 1|αi))) .
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Conditional likelihood

Consider again

P(yit = 1|xi1, . . . , xiT , αi) =
1

1 + e−(αi+xitβ)
= F (αi + xitβ)

and maintain a two-wave panel.

A sufficient statistic here is (any monotone function of) the sum yi1 + yi2.

Recall that the likelihood contribution of stayers does not contain information
on β.

Relevant case is, therefore, yi1 + yi2 = 1. These are movers in and out of the
waves.
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First,

P(yi1 = 0, yi2 = 1|xi, yi1 + yi2 = 1, αi)

is equal to
1

1 + P(yi1=1,yi2=0|xi,αi)
P(yi1=0,yi2=1|xi,αi)

.

Now,

P(yi1 = 0, yi2 = 1|xi, αi) =
e−(αi+xi1β)

1 + e−(αi+xi1β) 1 + e−(αi+xi2β)

P(yi1 = 1, yi2 = 0|xi, αi) =
1

1 + e−(αi+xi1β)

e−(αi+xi2β)

1 + e−(αi+xi2β)

and so

P(yi1 = 1, yi2 = 0|xi)

P(yi1 = 0, yi2 = 1|xi, αi)
=

e−(αi+xi2β)

e−(αi+xi1β)
= e−(xi2−xi1)β .

Therefore,

P(yi1 = 0, yi2 = 1|xi, yi1 + yi2 = 1, αi) =
1

1 + e−(xi2−xi1)β
= F ((xi2 − xi1)β)
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Note that this implies that ∆yi conditional on ∆yi ̸= 0 is Bernoulli with
succes probability

P(∆yi = 1|xi,∆yi ̸= 0) = F (∆xiβ).

This is a logistic regression (for the subpanel of movers) in first differences.

The conditional log-likelihood is

N∑
i=1

{∆yi = 1} log(F (∆xiβ)) + {∆yi = −1} log(1− F (∆xiβ)).

The score is
N∑
i=1

∆xi({∆yi = 1} − F (∆xiβ)) = 0

and is clearly unbiased.

The assumption of F being logistic is important here. Other choices do not
lead to sufficiency.
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Rectangular-array asymptotics

Potential for identification in short panels is limited.

Existence of moment conditions is very specific to the specification and the
parameter of interest.

Also, asymptotics that treat the length of the panel as fixed do not suit all
problems.

In increasingly many empirical settings the length of the panel is statistically
informative about individual-specific parameters.

Asymptotics where N and T grow large at the same rate—i.e., such that N/T
converges to a finite constant—give an accurate reflection of the sampling
behavior here.

Here, the incidental-parameter problem manifests itself as an asymptotic-
bias problem.
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An example: Linear model

Stripped-down version of linear model is

yit ∼ N(αi, θ).

Here,

θ̂ =
1

NT

N∑
i=1

T∑
t=1

(yit − ȳi)
2

has bias and variance

E(θ̂) = θ

(
1− 1

T

)
var(θ̂) =

2θ2

NT

(
1− 1

T

)
.

As N,T → ∞ with N/T → c2 bias and standard deviation are of the same
order and, hence, √

NT (θ̂ − θ) → N(−c θ, 2θ2),

is not centered at zero.

The estimator is consistent but asymptotically biased.
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Bias correction

For general nonlinear model, under regularity conditions,

plimN→∞θ̂ = θ +
B

T
+ o(T−1).

The leading bias term, B, can be estimated to construct a bias-corrected
estimator

θ̂ − B̂

T
.

The bias can be estimated based on analytical formulae using the fixed-effect
estimator.

A simple alternative is to use a jackknife.
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As an example of a jackknife suppose that individual time series are ergodic
and stationary.

Split the data into two (non-overlapping) subpanels of adjacent observations.

Let θ̂1 and θ̂2 denote the corresponding estimators, based on N × T1 and
N × T2 observations, respectively, where T1 + T2 = T .

Then,

plimN→∞θ̂1 = θ +
B

T1
+ o(T−1

1 ), plimN→∞θ̂2 = θ +
B

T2
+ o(T−1

2 ).

Hence,

θ̄ =
T1 θ̂1 + T2 θ̂2

T

p→ θ + 2
B

T
+ o(T−1).

It follows that the jackknife bias-correction estimator

2θ̂ − θ̄

is asymptotically unbiased.

Further, because θ̂1 and θ̂2 are asymptotically independent this estimator
has the same large-sample variance as θ̂.
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As N,T → ∞ with N/T → c2,

Maximum-likelihood satisfies
√
NT (θ̂ − θ)

d→ N(cB, I−1
θ ).

(for Iθ the Fisher information, as usual).

Bias-corrected estimator, θ̌, satisfies

√
NT (θ̌ − θ)

d→ N( 0 , I−1
θ ).

Bias correction justifies the use of conventional inference procedures (test
statistics and confidence sets) in rectangular panels.

Results carry over the average marginal effects in nonlinear models.
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Numerical implementation

Fixed-effect models have a large number of parameters.

Newton-Raphson type optimization requires the inverse Hessian matrix for
all parameters.

Often judged to be computationally difficult or even infeasible.

Not generally true.

The Hessian is sparse. Can be computed efficiently using only inverses of
low-dimension matrices.

67 / 74



The score and Hessian are
ℓθ
ℓα1

ℓα2

...
ℓαN

 ,



ℓθθ ℓθα1 ℓθα2 · · · ℓθαN

ℓα1θ ℓα1α1 0 · · · 0

ℓα2θ 0 ℓα2α2

. . . 0
...

...
. . .

. . .
...

ℓαNθ 0 0 · · · ℓαNαN

 ,

where the individual components are

ℓθ =

N∑
i=1

T∑
t=1

∂ log f(zit|θ, αi)

∂θ
,

ℓθθ =

N∑
i=1

T∑
t=1

∂2 log f(zit|θ, αi)

∂θ∂θ′
,

ℓαi =

T∑
t=1

∂ log f(zit|θ, αi)

∂αi
,

ℓαiαi =

T∑
t=1

∂2 log f(zit|θ, αi)

∂αi∂α′
i

,

and

ℓθαi =
T∑

t=1

∂2 log f(zit|θ, αi)

∂θ∂α′
i

= ℓ′αiθ.

By making use of partitioned-invere formulae we arrive at an expression for
the inverse Hessian, ℓ−1, that can be computed by using only the inverses of
the substantially smaller matrices ℓθθ and ℓαiαi .
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A Newton step for θ then is

θ − (ℓ−1)θθ ℓθ −
N∑
i=1

(ℓ−1)θαi ℓαi = θ − (ℓ−1)θθ

(
ℓθ −

N∑
i=1

ℓθαi
ℓ−1
αiαi

ℓαi

)
.

A Newton step for αi then is

αi − (ℓ−1)αiθ ℓθ −
N∑

j=1

(ℓ−1)αiαj ℓαj

=αi − ℓ−1
αiαi

(
ℓαi

− ℓαiθ
(ℓ−1)θθ

(
ℓθ −

N∑
j=1

ℓθαj
ℓ−1
αjαj

ℓαj

))
.
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Type heterogeneity

An alternative to fixed-effect and random-effect specifications is to consider
a finite-mixture model.

Here, the distribution of αi is not specified but its support is known to consist
of a fixed number of m points.

Conditional-independence restrictions yield (nonparametric) identification
from short panel data provided the type-specific distributions are linearly
independent.

Take a parametric model without covariates for simplicity of notation.

A unit i of type z has (conditional) likelihood

ℓz(yi1, . . . , yiT ; θz)

and marginal likelihood

m∑
z=1

ωz ℓz(yi1, . . . , yiT ; θz), ωz = P(αi = z).
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Classification

We do not aim to estimate the type, but rather the conditional distribution of
the data given types, ℓ1, . . . , ℓm, as well as the type distribution, ω1, . . . , ωm.

From Bayes’rule,

P(α = z|yi1, . . . , yiT ) =
ωz ℓz(yi1, . . . , yiT ; θz)∑m

z′=1 ωz′ ℓz′(yi1, . . . , yiT ; θz′)

is then equally known.

This allows to perform posterior classification.
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EM algorithm

The log-likelihood for a random sample is

N∑
i=1

log

(∑
z

ωz ℓz(yi1, . . . , yiT ; θz)

)

which is typically difficult to optimize.

Consider data augmentation. If we would know αi then we would consider
the complete-data problem.

Here, the log-likelihood is

N∑
i=1

∑
z

{αi = z}(logωz + log ℓz(yi1, . . . , yiT , θz)).
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Collect all the parameters θ1, . . . , θm and ω1, . . . , ωm in the vector ϑ.

Let ϑ1 be an initial guess.

Then EM updates to ϑ2 via the following two-step routine.

1. Compute the expected log-likelihood conditional on the data using ϑ1:

N∑
i=1

∑
z

Eϑ1({αi = z}|yi1, . . . , yiT ) (logωz + log ℓz(yi1, . . . , yiT , θz)) .

Note that this amounts to weighting by a (probabilistic) classification of units
to types.

2. Maximize this expected log-likelihood to find ϑ2. This is usually much
easier than maximizing the likelihood itself, and is often feasible in closed
form.
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